|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "选择排序\n", |
| 8 | + "时间复杂度都是O(n^2),不稳定\n", |
| 9 | + "是表现最稳定的排序算法之一 ,因为无论什么数据进去都是O(n2)的时间复杂度 \n", |
| 10 | + "选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n - 1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。那么,在一趟选择,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等 的元素后面,那么交换后稳定性就被破坏了。比较拗口,举个例子,序列5 8 5 2 9,我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。\n", |
| 11 | + "\n", |
| 12 | + "它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": null, |
| 18 | + "metadata": {}, |
| 19 | + "outputs": [], |
| 20 | + "source": [ |
| 21 | + "class Solution:\n", |
| 22 | + " def sortArray(self, nums: List[int]) -> List[int]:\n", |
| 23 | + " n = len(nums)\n", |
| 24 | + " for i in range(n-1):\n", |
| 25 | + " minIndex = i \n", |
| 26 | + " for j in range(i+1,n):\n", |
| 27 | + " if nums[minIndex] > nums[j]:\n", |
| 28 | + " minIndex = j\n", |
| 29 | + " nums[minIndex], nums[i] = nums[i], nums[minIndex]\n", |
| 30 | + " return nums" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "markdown", |
| 35 | + "metadata": {}, |
| 36 | + "source": [ |
| 37 | + "冒泡排序\n", |
| 38 | + "时间复杂度最差O(n^2),最好O(n) 稳定排序,内排序\n", |
| 39 | + "冒泡排序时针对相邻元素之间的比较,可以将大的数慢慢“沉底”(数组尾部)\n", |
| 40 | + "\n", |
| 41 | + " 最佳情况和最坏情况都是θ(n^2);\n", |
| 42 | + "\n", |
| 43 | + "但是如果在算法中加入didSwap标记\n", |
| 44 | + "\n", |
| 45 | + "如果循环没有进行交换,可以理解为数组已经排好序,同时退出排序;\n", |
| 46 | + "\n", |
| 47 | + "此时最佳情况为数组本来就按要求排好序,只需要θ(n)就可以结束算法;" |
| 48 | + ] |
| 49 | + }, |
| 50 | + { |
| 51 | + "cell_type": "code", |
| 52 | + "execution_count": null, |
| 53 | + "metadata": {}, |
| 54 | + "outputs": [], |
| 55 | + "source": [ |
| 56 | + "class Solution:\n", |
| 57 | + " def sortArray(self, nums: List[int]) -> List[int]:\n", |
| 58 | + " if nums is None: return nums\n", |
| 59 | + " n = len(nums)\n", |
| 60 | + " for i in range(n):\n", |
| 61 | + " for j in range(n-i-1):\n", |
| 62 | + " if nums[j] > nums[j+1]:\n", |
| 63 | + " nums[j], nums[j+1] = nums[j+1], nums[j]\n", |
| 64 | + " return nums" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "markdown", |
| 69 | + "metadata": {}, |
| 70 | + "source": [ |
| 71 | + "插入排序是前面已排序数组找到插入的位置\n", |
| 72 | + "3.4 算法分析\n", |
| 73 | + "最佳情况:T(n) = O(n)\n", |
| 74 | + "最坏情况:T(n) = O(n2)\n", |
| 75 | + "平均情况:T(n) = O(n2)" |
| 76 | + ] |
| 77 | + }, |
| 78 | + { |
| 79 | + "cell_type": "code", |
| 80 | + "execution_count": null, |
| 81 | + "metadata": {}, |
| 82 | + "outputs": [], |
| 83 | + "source": [ |
| 84 | + "class Solution:\n", |
| 85 | + " def sortArray(self, nums: List[int]) -> List[int]:\n", |
| 86 | + " if nums is None: return None\n", |
| 87 | + " n = len(nums)\n", |
| 88 | + " for i in range(1,n):\n", |
| 89 | + " j = i\n", |
| 90 | + " while j > 0 and nums[j-1] > nums[j]:\n", |
| 91 | + " nums[j-1],nums[j] = nums[j],nums[j-1]\n", |
| 92 | + " j -= 1\n", |
| 93 | + " return nums" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "markdown", |
| 98 | + "metadata": {}, |
| 99 | + "source": [ |
| 100 | + "归并排序:O(nlogn的时间复杂度),O(n)的空间复杂度" |
| 101 | + ] |
| 102 | + }, |
| 103 | + { |
| 104 | + "cell_type": "code", |
| 105 | + "execution_count": null, |
| 106 | + "metadata": {}, |
| 107 | + "outputs": [], |
| 108 | + "source": [ |
| 109 | + "class Solution:\n", |
| 110 | + " def sortArray(self, nums: List[int]) -> List[int]:\n", |
| 111 | + " def merge_sort(nums):\n", |
| 112 | + " if len(nums) <= 1:\n", |
| 113 | + " return nums\n", |
| 114 | + " mid = len(nums) // 2\n", |
| 115 | + " # 分\n", |
| 116 | + " left = merge_sort(nums[:mid])\n", |
| 117 | + " right = merge_sort(nums[mid:])\n", |
| 118 | + " # 合并\n", |
| 119 | + " return merge(left, right)\n", |
| 120 | + "\n", |
| 121 | + "\n", |
| 122 | + " def merge(left, right):\n", |
| 123 | + " res = []\n", |
| 124 | + " i = 0\n", |
| 125 | + " j = 0\n", |
| 126 | + " while i < len(left) and j < len(right):\n", |
| 127 | + " if left[i] <= right[j]:\n", |
| 128 | + " res.append(left[i])\n", |
| 129 | + " i += 1\n", |
| 130 | + " else:\n", |
| 131 | + " res.append(right[j])\n", |
| 132 | + " j += 1\n", |
| 133 | + " res += left[i:]\n", |
| 134 | + " res += right[j:]\n", |
| 135 | + " return res\n", |
| 136 | + " return merge_sort(nums)" |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "markdown", |
| 141 | + "metadata": {}, |
| 142 | + "source": [ |
| 143 | + "快排:不稳定排序,内排序,时间复杂度度O(nlogn) 最差 O(n^2)\n", |
| 144 | + " \n", |
| 145 | + "快速排序 的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。\n", |
| 146 | + "\n", |
| 147 | + "6.1 算法描述\n", |
| 148 | + "\n", |
| 149 | + "快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:\n", |
| 150 | + "步骤1:从数列中挑出一个元素,称为 “基准”(pivot );\n", |
| 151 | + "步骤2:重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;\n", |
| 152 | + "步骤3:递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。\n", |
| 153 | + "\n", |
| 154 | + "时间复杂度:最好情况O(n * logn)——Partition函数每次恰好能均分序列,其递归树的深度就为.log2n.+1(.x.表示不大于x的最大整数),即仅需递归log2n次; 最坏情况O(n^2),每次划分只能将序列分为一个元素与其他元素两部分,这时的快速排序退化为冒泡排序,如果用数画出来,得到的将会是一棵单斜树,也就是说所有所有的节点只有左(右)节点的树;平均时间复杂度O(n*logn)" |
| 155 | + ] |
| 156 | + }, |
| 157 | + { |
| 158 | + "cell_type": "code", |
| 159 | + "execution_count": null, |
| 160 | + "metadata": {}, |
| 161 | + "outputs": [], |
| 162 | + "source": [ |
| 163 | + "def quick_sort(nums):\n", |
| 164 | + " n = len(nums)\n", |
| 165 | + "\n", |
| 166 | + " def quick(left, right):\n", |
| 167 | + " if left >= right:#递归到左和右一样,直接退出\n", |
| 168 | + " return nums\n", |
| 169 | + " pivot = left\n", |
| 170 | + " i = left\n", |
| 171 | + " j = right\n", |
| 172 | + " while i < j:\n", |
| 173 | + " while i < j and nums[j] > nums[pivot]:#从右向左找第一个小于x的数\n", |
| 174 | + " j -= 1\n", |
| 175 | + " while i < j and nums[i] <= nums[pivot]:#从左向右找第一个大于x的数\n", |
| 176 | + " i += 1\n", |
| 177 | + " nums[i], nums[j] = nums[j], nums[i]#两者交换\n", |
| 178 | + " nums[pivot], nums[j] = nums[j], nums[pivot]#把pivot放到停止的位置(之前小于pivot的数已经被挖走,此处是空的)\n", |
| 179 | + " quick(left, j - 1)\n", |
| 180 | + " quick(j + 1, right)\n", |
| 181 | + " return nums\n", |
| 182 | + "\n", |
| 183 | + " return quick(0, n - 1)" |
| 184 | + ] |
| 185 | + }, |
| 186 | + { |
| 187 | + "cell_type": "markdown", |
| 188 | + "metadata": {}, |
| 189 | + "source": [ |
| 190 | + "堆排序\n", |
| 191 | + "\n", |
| 192 | + "最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序,空间复杂度O(1)\n", |
| 193 | + "堆排序(Heapsort) 是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。\n", |
| 194 | + "\n", |
| 195 | + "7.1 算法描述\n", |
| 196 | + "步骤1:将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;\n", |
| 197 | + "步骤2:将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];\n", |
| 198 | + "步骤3:由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。\n", |
| 199 | + "\n", |
| 200 | + "a.将无需序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;\n", |
| 201 | + "\n", |
| 202 | + "b.将堆顶元素与末尾元素交换,将最大元素\"沉\"到数组末端;\n", |
| 203 | + "\n", |
| 204 | + "c.重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。" |
| 205 | + ] |
| 206 | + }, |
| 207 | + { |
| 208 | + "cell_type": "markdown", |
| 209 | + "metadata": {}, |
| 210 | + "source": [ |
| 211 | + "步骤一 构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。\n", |
| 212 | + "\n", |
| 213 | + "https://www.cnblogs.com/chengxiao/p/6129630.html\n", |
| 214 | + "该数组从逻辑上讲就是一个堆结构,我们用简单的公式来描述一下堆的定义就是:\n", |
| 215 | + "\n", |
| 216 | + "大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2] \n", |
| 217 | + "\n", |
| 218 | + "小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2] \n", |
| 219 | + "\n", |
| 220 | + "步骤一 构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。\n", |
| 221 | + "a.假设给定无序序列结构如下\n", |
| 222 | + "2.此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点 arr.length/2-1=5/2-1=1,也就是下面的6结点),从左至右,从下至上进行调整。\n", |
| 223 | + "找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。\n", |
| 224 | + "这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。\n", |
| 225 | + "此时,我们就将一个无需序列构造成了一个大顶堆。\n", |
| 226 | + "\n", |
| 227 | + "步骤二 将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。" |
| 228 | + ] |
| 229 | + }, |
| 230 | + { |
| 231 | + "cell_type": "code", |
| 232 | + "execution_count": null, |
| 233 | + "metadata": {}, |
| 234 | + "outputs": [], |
| 235 | + "source": [ |
| 236 | + "class Solution:\n", |
| 237 | + " def sortArray(self, nums: List[int]) -> List[int]:\n", |
| 238 | + " def max_heapify(heap, root, heap_len):\n", |
| 239 | + " #root是起点, heap_len代表着终点(不包括)\n", |
| 240 | + " p = root\n", |
| 241 | + " while p * 2 + 1 < heap_len:\n", |
| 242 | + " #左子一定在heap里面\n", |
| 243 | + " l, r = p * 2 + 1, p * 2 + 2\n", |
| 244 | + " #右子不在heap中或者右子值比左子要小\n", |
| 245 | + " if heap_len <= r or heap[r] < heap[l]:\n", |
| 246 | + " nex = l\n", |
| 247 | + " else:\n", |
| 248 | + " nex = r\n", |
| 249 | + " #换了值就要向下一层遍历\n", |
| 250 | + " if heap[p] < heap[nex]:\n", |
| 251 | + " heap[p], heap[nex] = heap[nex], heap[p]\n", |
| 252 | + " p = nex\n", |
| 253 | + " #没有必要遍历下去了,因为没有换值\n", |
| 254 | + " else:\n", |
| 255 | + " break\n", |
| 256 | + "\n", |
| 257 | + " def build_heap(heap):\n", |
| 258 | + " #从最后一个非叶子节点开始进行调整,构建一个大顶堆\n", |
| 259 | + " for i in range(len(heap)//2-1, -1, -1):\n", |
| 260 | + " max_heapify(heap, i, len(heap))\n", |
| 261 | + "\n", |
| 262 | + " def heap_sort(nums):\n", |
| 263 | + " #从最后一个非叶子节点开始进行调整,构建一个大顶堆\n", |
| 264 | + " build_heap(nums)\n", |
| 265 | + " #交换最后一个和第一个,把剩下的构建成大顶堆\n", |
| 266 | + " #之前构建大顶堆需要从非叶节点从后向前进行调整,是因为整个结构都不是大顶堆,现在只有根节点不满足条件,所以只要对根节点做max_heapify就行了\n", |
| 267 | + " for i in range(len(nums) - 1, 0, -1):\n", |
| 268 | + " nums[i], nums[0] = nums[0], nums[i]\n", |
| 269 | + " max_heapify(nums, 0, i)\n", |
| 270 | + "\n", |
| 271 | + " heap_sort(nums)\n", |
| 272 | + " return nums" |
| 273 | + ] |
| 274 | + } |
| 275 | + ], |
| 276 | + "metadata": { |
| 277 | + "kernelspec": { |
| 278 | + "display_name": "Python 3", |
| 279 | + "language": "python", |
| 280 | + "name": "python3" |
| 281 | + }, |
| 282 | + "language_info": { |
| 283 | + "codemirror_mode": { |
| 284 | + "name": "ipython", |
| 285 | + "version": 3 |
| 286 | + }, |
| 287 | + "file_extension": ".py", |
| 288 | + "mimetype": "text/x-python", |
| 289 | + "name": "python", |
| 290 | + "nbconvert_exporter": "python", |
| 291 | + "pygments_lexer": "ipython3", |
| 292 | + "version": "3.7.0" |
| 293 | + } |
| 294 | + }, |
| 295 | + "nbformat": 4, |
| 296 | + "nbformat_minor": 4 |
| 297 | +} |
0 commit comments